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Abstract
Let R be an associative ring with unit 1 ̸= 0, we call an unital left R-module M semi co-Hopfian (resp semi Hopfian ) if any

injective (resp. surjective) endomorphism of M has a direct summand image (resp kernel). Starting from that every artinian
module is co-Hopfian and so semi co-Hopfian, we showad in this paper that the class of ring on which every semi co-Hopfian
module is artinian coincide with the class of artinian principal ideal rings when the v.p is satisfied. Moreover, some properties
of this class of rings are given.
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1. Introduction

The study of classes of rings (modules) by properties of their endomorphisms is a classical research
subject since 1960s. In 1986, Hiremath [3] introduced the concept of Hopfian modules and rings. Later, the
dual concept cohopfian modules and rings were given. Hopfian and co-Hopfian modules (rings) have been
investigated by several authors. In 2008, P. AYDOGDU and A. C. OZCAN introduced and investigated
the semi Hopfian and semi co-Hopfian modules.
Recall that a module M is called co-Hopfian (resp. Hopfian) if any injective (resp. surjective) endomorphism
of M is an automorphism. Note that any artinian (resp noetherian) module is co-Hopfian (resp. Hopfian).
A module M is called semi co-Hopfian (resp. semi Hopfian) if any injective (resp. surjective) endomorphism
of M has a direct summand image (resp. kernel). In other words, any injective (resp. surjective) endomor-
phism of M splits.
Clearly, any co-Hopfian (resp. Hopfian) module is semi co-Hopfian (resp semi Hopfian). The converse is not
true in general, for example let ZM = Q(N). By [2] M is semi co-Hopfian but not co-Hopfian.
In [2] M is semi co-Hopfian if and only if any submodule N of M which is isomorphic to M is a direct
summand of M, therefore, the concept of semi co-Hopfian module is a generalization of co-Hopfian module.
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The aim of this paper is to characterize the rings R, on which any semi co-Hopfian module is artinian. These
rings are named SCHA-rings.
Throughout this paper, R denotes an associative ring with identity 1 ̸= 0, and modules M are unitary
left R-modules. The property Hom(Mi,Mj) = Hom(Mj,Mi) = 0 whenever i ̸= j for a family {Mi} of
R-modules, is named Vanaja property (briefly v.p).
Let R be a ring. A module M is noetherian (resp. artinian) if any ascending (resp. descending) chain of
submodules of M stabilizes. M is strongly co-Hopfian (resp. strongly Hopfian) if for any endomorphism f

of M the descending chain Im(f) ⊇ Im(f2) ⊇ · · · (resp. ascending chain Ker(f) ⊆ Ker(f2) ⊆ · · · ) stabilizes.
M is called Dedekind finite if M = M⊕N for some module N, N = 0. The socle of M (Soc(M)) is defined
to be the sum of the minimal nonzero submodules of M. A submodule of M is essential if it has a non-trival
intersection with every non-trivial submodule of M: that is, E ∩ L = 0 implies L = 0 for a submodule L of
M. M is finitely cogenerated if only if Soc(M) is essential and finitely generated.

2. Preliminary results

Lemma 2.1. The following are equivalent for a module M.

1. M is co-Hopfian
2. M is Dedekind finite and semi co-Hopfian
3. M is weakly co-Hopfian and semi co-Hopfian.

Proof. (3) ⇔ (1) ⇒ (2) obvious
(2) ⇒ (1) Let f be an injective endomorphism of M. Then f(M)⊕ K for K ⩽ M. Define a homomorphism
φ : M⊕ K −→ M by φ(m,k) = f(m) + k. Then φ is an isomorphism. Since M is Dedekind finite, K = 0.
Hence f(M) = M and so f is an isomorphism.

Lemma 2.2. Any direct summand of semi co-Hopfian modules is semi co-Hopfian.

Proof. Let N be a direct summand of M and f : N −→ N a monomorphism. Write M = N⊕N ′. Then
g : M −→ M, g(n+n ′) = f(n) +n ′ where n ∈ N, n ′ ∈ N ′, is a monomorphism. Since Im(g) = Im(f)⊕N ′

is a direct summand of M, we get that Im(f) is a direct summand of N.

Lemma 2.3. (Theorem .0.1. of [4] )

1. Let M be a co-Hopfian (Hopfian) module. If M decomposes as a direct sum of a family {Mi} of
nontrivial R-modules, then each Mi is co-Hopfian (Hopfian).

2. Let {Mi} be a family of family of nontrivial R-modules. We suppose that v.p is satisfied. If each Mi

is co-Hopfian (Hopfian), then so is M.

Lemma 2.4. (Proposition 10.18 of [1])
For each ring R, the following statements are equivalent:

1. R is left artinian;
2. Every finitely generated left R-module is finitely cogenerated.

Remark 2.5. :

1. Every cyclic module is finitely generated.
2. Any co-Hopfian module is semi co-Hopfian. But the converse is not true in general. For example, let

ZM = Q(N). Since M is quasi-injective, it is semi co-Hopfian. But M ∼= M⊕Q is not Dedekind finite,
hence not co-Hopfian.

Lemma 2.6. Every finitely cogenerated module M is Dedekind finite.
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Proof. At beginning recall that if Soc(M) is essential and Dedekind finite, then M is Dedekind finite.
M finitely cogenerated implies Soc(M) is essential. Now let’s prove that Soc(M) is Dedekind finite. By
definition Soc(M) is a direct sum of all simple submodules of M, hence Soc(M) is a semisimple submodule
of M. We can write Soc(M) =

⊕
i∈I Si. Since Soc(M) is finitely generated then I is finite and so Soc(M)

is of finite lenght. Therefore Soc(M) is Dedekind finite.

An I-ring (S-ring) is a ring such that every co-Hopfian (Hopfian) module is artinian (noetherian).

Lemma 2.7. (Theorem 9 of [5])
For a commutative ring R, the following are equivalent:

1. R is a artinian principal ideal ring;
2. R an I-ring;
3. R is S-ring.

Lemma 2.8. (Lemma 2 of [5] p.247)
Every integral domain S-ring is a field.

3. Aim results

Proposition 3.1. Let R be a commutative ring. If R is a SCHA-ring, then R is an I-ring.

Proof. Assume that R is a SCHA-ring. Let M be a co-Hopfian module, then by second point of remark 2.5,
M is semi co-Hopfian. Therefore M is artinian.

Theorem 3.2. Let R be a commutative ring. We suppose that v.p is satisfied. The following are equivalent:

1. R is a artinian principal ideal ring;
2. R is SCHA-ring.

Proof. (2) ⇒ (1) Results from Lemma 2.6 and proposition 3.1.
(1) ⇒ (2) Let M be a semi co-Hopfian module. R principal ideal ring implies every R-module is a direct
sum of cyclic modules. Let M =

⊕
Mi. We can write M = Mi ⊕ (⊕i̸=j(Mj)), in fact every Mi is a direct

summand of M. By lemma 2.2, every Mi is semi co-Hopfian.(⋆)
Recall every Mi is cyclic hence finitely generated. Since R artinian, referring to lemma 2.4, for each i, Mi

is finitely cogenerated. It results by lemma 2.6 for each i Mi is Dedekind finite. (⋆⋆).
(⋆) and (⋆⋆) imply for each i , Mi is Dedekind finite and semi co-Hopfian. By lemma 2.1 for each i, Mi is
co-Hopfian. Referring to the second point of lemma 2.3 M is co-Hopfian. Over artinian principal ideal ring,
co-Hopfian and artinian modules coincide. Therefore M is artinian.
Conclusion R is a SCHA-ring.

Corollary 3.3. For a commutative ring R, if v.p is satisfied then the following are equivalent:

1. R is an artinian principal ideal ring;
2. R is an I-ring;
3. R is a SCHA-ring.
4. R is a S-ring

Proof. Results from theorem 9 of [5] and theorem 3.2.

Proposition 3.4. Let R be a commutative SCHA-ring. We suppose that v.p is satisfied. Then every prime
ideal is maximal. Also, there are only finitely many prime ideals.
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Proof. Let P be a prime ideal of R, R/P is a commutative integral domain. By referring successively corollary
3.3 and lemma 2.8, R/P is a field. Therefore P is maximal.
For the second statement we denote by L the set of all prime ideals. Let P ∈ L, R/P is a field so R/P is
simple. Furthemore if P and P ′ ∈ L with P

nsubseteqP ′. Since v.p is satisfied then Hom(R/P,R/P ′) = 0. Every simple module is semi co-Hopfian but
also Dedekind finite. By lemma 2.1 R/P is co-Hopfian. If v.p is satisfied, direct sum of co-Hopfian modules is
co-Hopfian. Therefore M =

⊕
P∈L R/P is co-Hopfian. Over SCHA-ring every co-Hopfian module is artinian.

Hence L is finite.

Lemma 3.5. (Theorem of [6]) Any injective endomorphism of a finitely generated R-module is an isomorphism
if and only if every prime ideal of R is maximal.
In other words all finitely generated R module is co-Hopfian if and only if all prime ideals of R are maximal.

Recall a ring R is strongly-π-regular if every cyclic R-module is strongly co-Hopfian.

Proposition 3.6. Let R be a commutative SCHA-ring. We suppose that v.p is satisfied. Then R is strongly-
π-regular.

Proof. Let M be a cyclic R-module, then M is finitely generated. By lemma 3.5 and proposition 3.4, M
is co-Hopfian. Since the class of SCHA-rings and the class of I-rings coincide if v.p is satisfied, then M is
artinian. Every artinian ring is strongly co-Hopfian, therefore M is strongly co-Hopfian.
In conclusion R is strongly-π-regular.

Proposition 3.7. Let’s suppose v.p is satisfied, A finite direct product R =
∏

Ri of SCHA-rings is a SCHA-
ring if and only if every Ri is a SCHA-ring.

Proof. First let’s suppose R =
∏

Ri is a SCHA-ring and Mi a semi co-Hopfian Ri-module. From this
surjective homomorphism Pi :

∏
Ri −→ Ri every Ri-module has a structure of R-module. Hence Mi is

artinian.
Secondly, let’s suppose every Ri is a SCHA-ring. By v.p we can write M = ⊕Mi = Mi ⊕ (⊕i̸=j(Mj)) with
each Mi is a Ri-module. M semi co-Hopfian by lemma 2.2 every Mi is semi co-Hopfian. Therefore every Mi

is artinian. A finite direct product of artinian rings is artinian. In conclusion R =
∏

Ri is a SCHA-ring.

References

[1] F. W. Anderson and K.R. Fuller: Rings and categories of modules, Springer-Verlag, Berlin 1974. 2.4
[2] P. Aydogdy and A. C. Ozcan: Semi co–Hopfian and Semi Hopfian Modules, Hacettepe University Department of

Mathematics 06800 Beytepe, Ankara, Turkey 1
[3] V. A. Hiremath: Hopfian rings and Hopfian modules, Indian J. Pure Appl.Math. 17(7), 895-900 (1986). 1
[4] F. C. Leary co-Hopfian Modules, arXiv:2201.09961 [math.AC] (or arXiv:2201.09961v1 [math.AC] for this version)

https://doi.org/10.48550/arXiv.2201.09961 2.3
[5] M. Sangharé, Sur le I-anneaux, les S-anneaux et les F-anneaux, Thèse d’Etat, Université Cheikh Anta Diop de

Dakar, 17 Dec. 1993. 2.7, 2.8, 3
[6] W. V. Vasconcelos, Injective Endomorphisms of Finitely Generated Modules, Proceedings of the American Math-

ematical Society, Vol. 25, No. 4 (Aug., 1970), pp. 900-901. 3.5


	Introduction
	Preliminary results
	Aim results

